



# **GCE Biology**

S21-A400U10-1

# **Assessment Resource 7**

Energy for Life Resource G

| Anguar  | الم | augotiono  |
|---------|-----|------------|
| Allowel | aш  | questions. |

Photosynthetic cells are transducers converting light energy into chemical energy. Several
photosynthetic pigments are involved in the absorption of light energy. Image 1.1 is an absorption
spectrum showing the relative absorbance of different wavelengths of light energy by different
pigments.

Image 1.1



----- chlorophyll a chlorophyll b carotenoids

| (a) | (1)  | Using information in image 1.1, describe the absorption spectrum of chlorophyll                      | [2]       |
|-----|------|------------------------------------------------------------------------------------------------------|-----------|
|     |      |                                                                                                      |           |
|     |      |                                                                                                      |           |
|     | (ii) | Suggest the advantage to photosynthetic cells of having several different liquid absorbing pigments. | gh<br>[1] |
|     |      |                                                                                                      |           |

Prochlorococcus is a species of cyanobacterium and is the most abundant photosynthetic organism on Earth. Cells of Prochlorococcus contain molecules of chlorophyll a and b embedded in photosynthetic membranes.

Image 1.2 and image 1.3 show a molecular model of a chlorophyll molecule and the arrangement of chlorophyll molecules in the photosynthetic membrane.

#### Image 1.2



### Image 1.3



- (b) (i) State one element, other than carbon, hydrogen and oxygen, that is found in the chlorophyll molecule. [1]
  - (ii) Use image 1.2 and image 1.3 to explain how the properties of the head and tail of the chlorophyll molecule result in its position in the photosynthetic membrane. Suggest an advantage of the position of the chlorophyll molecules. [3]

| (c) | In the light dependent stage of photosynthesis, molecules of chlorophyll a emit electrons  Describe how these electrons are replaced in non-cyclic photophosphorylation. [2] |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                                                                        |                                             |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|------------------------------------------------------------------------|---------------------------------------------|
|     |                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                                                                        |                                             |
| (d) | Prochlorococcus is found at d<br>Different proportions of chloro<br>at different depths. Image 1.4<br>penetrate seawater.                                                    | epths between the character shows the contracter to the contracter than the contracter | en 0 and 200<br>nlorophyll b ar<br>depth to whic | m in oceans arour<br>e produced by <i>Prod</i><br>ch different waveler | nd the work<br>chlorococcu<br>ngths of ligh |
|     | Image 1.4                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                                                                        |                                             |
|     | Wav                                                                                                                                                                          | elength of lig                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | jht / nm                                         |                                                                        |                                             |
|     | (surface of sea water) 0 400                                                                                                                                                 | 500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 600                                              | 700                                                                    |                                             |
|     | 100                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                                                                        |                                             |
|     | Depth<br>/m<br>150                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                                                                        |                                             |
|     | 200                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                                                                        |                                             |
|     | 250                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                                                                        |                                             |
|     | Using image 1.1 and image<br>between 150 metres – 200 me                                                                                                                     | 1.4, explain<br>tres produce                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | why <i>Prochlo</i><br>chlorophyll b              | rococcus cells four<br>but not chlorophyll                             | nd at depth<br>a. [ˈː                       |
|     |                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                                                                        |                                             |
|     |                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                                                                        |                                             |
|     |                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                                                                        |                                             |

(e) Prochlorococcus is found in enormous numbers even in nutrient poor waters. Image 1.5 shows a photomicrograph of a Prochlorococcus cell.

## Image 1.5



 $X-Y = 0.6 \mu m$ 

(i) Calculate the surface area : volume ratio of a *Prochlorococcus* cell which has a radius of 0.3 μm.
 Express your ratio to the nearest whole numbers.

Surface area of a sphere =  $4\pi r^2$ .

Volume of a sphere =  $\frac{4}{3} \pi r^3$ 

$$\pi = 3.14$$

Surface area : volume ratio = .....: : ......

| (ii) | With reference to the size of the organism, explain how <i>Prochlorococcus</i> is able to gain sufficient minerals from nutrient poor waters. [3] |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------|
|      |                                                                                                                                                   |
|      |                                                                                                                                                   |
|      |                                                                                                                                                   |
|      |                                                                                                                                                   |
|      |                                                                                                                                                   |
|      |                                                                                                                                                   |
|      |                                                                                                                                                   |
|      |                                                                                                                                                   |
|      |                                                                                                                                                   |
|      |                                                                                                                                                   |
|      |                                                                                                                                                   |
|      |                                                                                                                                                   |
|      |                                                                                                                                                   |
|      |                                                                                                                                                   |
|      |                                                                                                                                                   |
|      |                                                                                                                                                   |
|      |                                                                                                                                                   |
|      |                                                                                                                                                   |

- (f) Prochlorococcus stains red when using the Gram staining technique.
  - (i) Complete the flow chart below which shows the stages in the Gram staining technique.
     [2]



 (ii) Explain what this staining technique indicates about the structure of the cell wall of Prochlorococcus.

20

2. The Grand Banks is an area of sea off the coast of Newfoundland in Canada. Cod have been fished in the area for hundreds of years.

During the 1900s there were significant improvements in fishing techniques. By 1968, the number of cod caught had increased and 800000 tons of cod were landed in that year alone. This represented 60% of the total cod population of reproductive age.

By 1992 the population had dropped to less than 1% of earlier levels and cod fishing was banned in the Grand Banks by the Canadian Government.

Image 4.1 shows the estimated breeding population of cod in the Grand Banks between 1850 and 2010.

#### Image 4.1



Year

| (a) | With reference to human activity, explain the shape of the estimated population graph shown in image 4.1 between the following dates: [3] |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------|
|     | 1850 to 1950;                                                                                                                             |
|     | 1970 to 1990;                                                                                                                             |
|     | 1370 to 1330,                                                                                                                             |
|     | 1990 to 2010.                                                                                                                             |
|     |                                                                                                                                           |
|     |                                                                                                                                           |
|     |                                                                                                                                           |
|     |                                                                                                                                           |
|     |                                                                                                                                           |
|     |                                                                                                                                           |
|     |                                                                                                                                           |
|     |                                                                                                                                           |
|     |                                                                                                                                           |
|     |                                                                                                                                           |
|     |                                                                                                                                           |

(b) Cod continue to grow throughout their lives. The older the cod, the larger they will be. Image 4.2 and image 4.3 show how the age of cod affects the number of eggs released and the mean percentage of fertilised eggs developing into embryos.

Image 4.2



Image 4.3



| (i)  | Evaluate the effectiveness of using this minimum mesh size in allowing the rec |
|------|--------------------------------------------------------------------------------|
| (1)  | of the cod population.                                                         |
|      |                                                                                |
|      |                                                                                |
|      |                                                                                |
|      |                                                                                |
|      |                                                                                |
| (ii) | Other than restricting the mesh size of nets, give two methods which are u     |
| (,   | prevent overfishing.                                                           |
|      |                                                                                |
|      |                                                                                |
|      |                                                                                |
|      |                                                                                |
|      |                                                                                |
|      |                                                                                |
|      |                                                                                |
|      |                                                                                |
|      |                                                                                |
|      |                                                                                |
|      |                                                                                |
|      |                                                                                |
|      |                                                                                |
|      |                                                                                |

As the wild cod numbers are decreasing, cod are now being farmed, which can have major impacts on their local ecosystems. Image 4.4 below shows the relationship between the cod and its natural environment.

### Image 4.4



| (c) Use image 4.4 and your knowledge of fish farming to conclude how fish farming can impact the ecosystem in the surrounding areas. [5] |
|------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                          |
|                                                                                                                                          |
|                                                                                                                                          |
|                                                                                                                                          |
|                                                                                                                                          |
|                                                                                                                                          |
|                                                                                                                                          |
|                                                                                                                                          |
|                                                                                                                                          |
|                                                                                                                                          |

| (d) | Bottom trawling involves dragging very large weighted nets along the sea bed. The heavy equipment used in bottom trawling destroys the seabed, as shown in image 4.5. |   |  |  |  |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|--|--|--|
|     | Image 4.5                                                                                                                                                             |   |  |  |  |
|     | D-f b-#                                                                                                                                                               | 6 |  |  |  |

Before bottom trawling

Same area 2 days after bottom trawling



e)

Planetary boundaries attempt to quantify and set a safe limit for the environmental impact of human activity. The boundary limit for CO<sub>2</sub> in the atmosphere was set at 350 ppm by volume, the current value is in excess of 400 ppm by volume.

State and explain one effect that increased CO<sub>2</sub> has had on the marine environment.

[2]